
Planning Paths of Complete Coverage of an Unstructured
Environment by a Mobile Robot

A. Zelinsky1, R.A. Jarvis2, J.C. Byrne2 and S. Yuta3
1Intelligent Machine Behaviour Section, Electrotechical Laboratory, Tsukuba 305 Japan.

2Intelligent Robotics Research Centre. Monash University, Clayton 3168 Australia.
3Intelligent Robot Laboratory. Tsukuba University, Tsukuba 305 Japan.

Abs t rac t - Much of the focus of the research effort in path
planning for mobile robots has centred on the problem of
finding a path from a start location to a goal location, while
minimising one or more parameters such as length of path,
energy consumption or journey time. A path of complete
coverage is a planned path in which a robot sweeps all areas of
free space in an environment in a systematic and efficient
manner. Possible applications for paths of complete coverage
include autonomous vacuum cleaners, lawn mowers, security
robots, land mine detectors etc. This paper will present a
solution to this problem based upon an extension to the
distance transform path planning methodology. The solution
has been implemented on the self-contained autonomous
mobile robot called the Yamabico.

I. INTRODUCTION

The problem of planning a path of complete coverage of
an environment by a mobile robot has not received
significant research attention. Much of the focus of the
research effort to date has centred on the problem of finding
a path from a start location to a goal location, while
minimising one or more parameters such as length of path,
energy consumption or journey time. A mobile robot
should be capable of planning other kinds of paths, such as
have the capability to find paths which ensure the complete
coverage of an environment. Possible applications of such
paths include autonomous vacuum cleaners, lawn mowers,
security robots, land mine detectors etc. Complete coverage
paths can also allow a robot to systematically explore and
map unknown terrains. This paper will presents a solution
to the problem of complete coverage based upon an
extension to the distance transform path planning
methodology. Experimental results are presented by way of
simulation and an implementation on the Yamabico mobile
robot.

Using distance transforms for planning paths for mobile
robot applications was first reported by members of our
group in [1]. This approach considered the task of path
planning to finding paths from the goal location back to the
start location. The path planner propagates a distance wave
front through all free space grid cells in the environment
from the goal cell. The distance wave front flows around
obstacles and eventually through all free space in the
environment. For any starting point within the environment
representing the initial position of the mobile robot, the
shortest path to the goal is traced by walking down hill via
the steepest descent path. If there is no downhill path, and
the start cell is on a plateau then it can be concluded that no
path exists from the start cell to the goal cell i.e. the goal is
unreachable. Initially all the cells are initialised to high
values. Fig. 1 shows an example of the distance transform.

Goal1 1

111

1 1 1 2

2

2

2

22

3

2 2 2

3

2

2

3456

3

3

3

4

4

4

4 4

5

5

6

6

7

7

7

8

5 5

6

Fig. 1. Distance Transform Path Planning.

One significant advantage that distance transform path
planning has over other path planning methods is that it can
easily be induced to exhibit different types of robot
navigation behaviours. Reference [1] described how the
distance transform could be modified to produce
"conservative", "adventurous" path planning behaviours in
addition to the "optimum" i.e. shortest path behaviour.
Experimental simulation results of the "complete coverage"
path planning behaviour were reported [2]. However the
algorithm was not published. The algorithm for complete
coverage is as follows. To achieve the complete coverage
path planning behaviour, instead of descending along the
path of steepest descent to the goal, the robot follows the
path of steepest ascent. In other words the robot moves away
from the goal keeping track of the cells it has visited. The
robot only moves into a grid cell which is closer to the goal
if it has visited all the neighbouring cells which lie further
away from the goal. Fig. 2 shows a "complete coverage"
path example. This figure shows an environment with one
obstacle, start (S) and goal (G) locations, values of the
distance transform, and a "complete coverage" path from S
to G.

The algorithm for the complete coverage of an
environment is as follows:

Set Start Cell to Current Cell
Set all Cells to Not Visited
Loop

Find unvisited Neighbouring cell with highest DT
If No Neighbour Cell found then

Mark as Visited and Stop at Goal
If Neighbouring Cell DT <= Current Cell DT then

Mark as Visited and Stop at Goal
Set Current cell to Neigbouring cell

Loop End

Path of Complete Coverage Algorithm

S

G9 8 7 6 5 4 3 2 1 1 2 3 4

19 8 7 6 5 4 3 2 1 1 2 3 4

29 8 7 6 5 4 3 2 2 2 2 3 4

19 8 7 6 5 4 3 2 1 1 2 3 4

29 8 7 6 5 4 3 2 2 2 2 3 4

39 8 7 6 5 4 3 3 3 3 3 3 4

44444

555555

666 666

6

6

9 8 7

9 8 7

9 8 7 7 7 7 7 7 7 71 0

1 0

1 01 11 2

1 1

1 1

1 2

1 21 3

1 3

G

S

Fig. 2. Path of Complete Coverage

An advantage of this complete coverage strategy is that
the start and goal can be specified. This is useful if for
example, if a warehouse floor that needs to be cleaned. The
robot can start at one end of the warehouse and end up at the
other end, ready to enter the next warehouse. While this
strategy does not guarantee the "complete coverage" path
will be an optimum path i.e. the shortest possible and not
unnecessarily visiting any cell more than once, the
"complete coverage" produces a reasonable path with
minimal secondary visits to grid cells. To find the optimum
solution to this problem is equivalent to solving the
Traveling Salesman's Problem. Each grid cell can be
regarded as city with each city connected up to 8 other cities.

Closer observation of the above described path of
complete coverage shows that the path produces too many
turns. This is because the coverage path follows the "spiral"
of the distance transform wave front that radiated from the
goal. In certain configurations of obstacles in an
environment this can produce unsatisfactory paths Complete
coverage paths of the type shown in Fig. 2 are difficult to
execute on a mobile robot that navigates by dead reckoning.
The high number of turns and path segments will inevitably
cause errors to be introduced in the estimation of the robot's
correct position. Possibly for these reasons an
implementation of complete coverage paths on an actual
mobile robot has not been reported. A possible solution

would be to use external navigation beacons. However this
adds artificial structure to the environment. It is our aim to
conduct experimental work in unstructured environments. In
the next section a new approach is described which extends
the work originally reported in [1]. The new approach
generates a superior complete coverage path which has fewer
turns and has longer individual straight path segments. This
new approach facilitates its implementation on the self-
contained Yamabico mobile robot. The Yamabico robot uses
dead reckoning and the tracking of landmarks to maintain its
position estimate while it is executing the complete
coverage path.

II. THE APPROACH

The new approach to the problem of complete coverage
is based upon an extension to the "path transform" that was
developed by a member of our group [3]. The path transform
was developed as an extension to the original distance
transform. A disadvantage of the distance transform and most
other path planning methods is that they only minimise the
distance to a goal. However the safety of the robot is
important particularly if the robot is operating in an
unknown environment since there are uncertainties in the
sensor data, i.e. the exact shape and position of obstacles.
This problem is compounded by the uncertainty in the
dynamic control of a robot i.e. the precise position of the
robot is not always known by the robot's control system.
Thus both minimum distance to a goal and safety of the
robot need to be considered simultaneously during path
planning. The path transform was successfully implemented
on our Yamabico mobile robot [4]. Using the path
transform the Yamabico was able to navigate along a known
corridor and avoid unknown obstacles arranged in non-trivial
configurations.

In the path transform approach, instead of propagating a
distance from the goal wave front through free space, a new
wave front is propagated which was a weighted sum of the
distance from the goal together with a measure of the
discomfort of moving too close to obstacles. This had the
effect of producing a distance transform which has the
desirable properties of potential fields [5] without suffering
from the local minima problem. The path transform can be
regarded as a numeric potential field.

The distance transform is extended to include safety from
obstacles information in the following way. Firstly, the
distance transform is inverted into an "obstacle transform"
where the obstacle cells become the goals. The resulting
transformation yields for each free cell in the data structure
the minimal distance from the centre of the free space cell to
the boundary of an obstacle cell. Refer to Fig. 3 for an
example of the obstacle transform and the accompanying
original distance transform.

1 1 1 1 1 1

1

1

1

1 1 1 1

1

1

111

11

1 1 1 1 1 1

1

1

1

1

1

1

1 1 1 1

1

1

2

2

2 2 2 2 2 2 2

2

2

2

2 2 2 2 2 2

2

2

2

2

2

2 2 2 2

2

2

2

2

3 3 3 3 3

3

3

3

3

3

3

33

3

3

4

4

4

4

4

4

4

4

44

4 5

Fig. 3. Obstacle and Distance Transforms.

Finally, a second distance transform is generated through
free space from the goal location using a new cost function.
This cost function is referred to as the "path transform"
(PT). The path transform for a cell c is defined as:

PT(c) =
min

p ∈ P







length()p + ∑

ci ∈ p

 αobstacle()ci

where P is the set of all possible paths from the cell c to the
goal, and p ∈ P i.e. a single path to the goal. The function
length(p) is the length of path p to the goal. The function
obstacle(c) is a cost function generated using the values of
the obstacle transform. It represents the degree of discomfort
the nearest obstacle exerts on a cell c. The weight α is a
constant ≥ 0 which determines by how strongly the path
transform will avoid obstacles.

Finding the shortest path to a goal using path transforms
is done in the same manner as finding the shortest path
using distance transforms, i.e. by following the steepest
path of descent. The path transform does not yield a
transform with local minima, because all the costs of paths
to the goal from each cell are calculated. The path transform
for each cell is the minimum propagated path cost to the
goal. Fig. 4 shows the path transform solution to the same
problem posed in Fig. 3. This figure shows the result of

applying two different obstacle clearance cost functions. The
top figure shows a lighter cost function than the bottom
figure. The degree of safety of the robot's path using the
path transform can be "tuned".

A similar result to path transforms called "numeric
potential fields" was reported by Barraquand and Latombe
[6]. The numeric potential is computed in three (3) steps.
Firstly, an "obstacle transform" is computed of the free
space, from which a "distance skeleton" is extracted. Joining
the highest values in the obstacle transform yields a distance
skeleton. Secondly, the goal cell is connected to the distance
skeleton and a distance transform is computed from the goal
cell to all members cells of the distance skeleton. Thirdly,
another distance transform is computed from the distance
skeleton cells to all the remaining free space cells in the
environment. This method is more complicated to compute
than the path transform. Also, since it maximises clearance
from obstacles it can deviate the solution path too far from
the shortest path. Another drawback is this method does not
consider clearance information. This method can guide the
robot through narrow free space channels that are close to
the goal thus endangering the robot. This problem is
countered by removing channels that are narrow, but the
completeness of solution is lost. The path transform does
not suffer this drawback.

G

S

67

76

65

6472

45

63 64

60 60 63 66

54 53 54 55 59 56 59 62 65

50 42 43 47 51 55 59 62 65

46 38 46 54 59 63 60 61 62

41 34 42 67 59 58 59

19

8

4

20 21 25 29 33 30 41 62 55 55 57

9

21

13 17 21 25 29 40 46 50 54 51 53 55

25 29 33 37 34 38 42 46 49 51 5412

11 38 38 41 44 47 50 53

 G

S

297

486

395

207298

262

186 185

206 185184 185

304 303 304 305296 205 184183 184

283 212 213 234 227 206 203 182 183

262 191 262 305 298 293202 181 182

241 170241 292 201 180 181

133

42

21

134 135 156 177 198 149 240 291 200 179 180

43

135

64 85 106127 148 239262 283 286 199 178 179

156 177 198 219 170 191 194 195196 177 17892

91 191 172 173 174 175 176177

Fig. 4. Path Transforms with different cost functions.

The path transform forms a better contour path for a robot
to implement a path of complete coverage than the contour
path generated by the original distance transform. The
distance transform forms circular contour patterns which
radiate from the goal points. The path transform, on the
other hand, forms contour patterns which slope towards the
goal, but also follow the shape profile of obstacles in the
environment. Fig. 5 and 6 show the distance and path
transform solutions for the same planning problem. The
path transform (Fig. 6) produces the better execution path,
since it produces a path which has less turns and has more
path segments that are straight. The distance transform (Fig.
5) produces a path which requires 37 turns and has an
average length of 2.00 units for each path segment. In
contrast the path transform in Fig. 6 produces a path which
requires 19 turns and has an average length of 4.05 units for
each path segment.

Fig. 5. Distance Transform Path of Complete coverage.

Fig. 6. Path Transform Path of Complete coverage.

III. Implementation

The aim of this research project was to implement the
scheme of complete coverage described in the previous
section on the Yamabico Robot, shown in Fig. 7. The
Yamabico is an autonomous self contained mobile robot
that was purpose built for the research of mobile robotics
problems in indoor and outdoor environments [7]. The robot
is equipped with two driving wheels mounted on a central
axis and has optical and ultrasonic range sensors. Each
hardware function of the robot is modularised to run on a
single board computer. A master module implements
decision making and coordinates the actions of each hardware
module via shared memory and a communications bus. The
master module is programmed to control the operations of
the robot with the sensor based ROBOL/0 language
developed for the Yamabico [8]. Software on the robot's
master module runs under a multi tasking operating system
(MOSRA) which was written specifically for the Yamabico.

Fig. 7. The Yamabico Mobile Robot.

To implement the complete coverage scheme on the
Yamabico some constraints must be placed on the approach
described in the previous section. Namely, the grid used to
generate the complete coverage path should be considered to
be 4-connected instead of 8-connected. This constraint causes
the planning scheme to generate a path that has longer
straight path sections and turns are restricted to multiples of
90 degrees. This type of path is more suitable for
implementation on a practical mobile robot like the
Yamabico. The penalty for this constraint is that extra visits
to a number of cells may result. Simulation studies have
shown that the extra number of visits is small, less than 2%
of the number of grid cells that represent the environment.

To correctly execute the planned path of complete
coverage the robot must navigate with great accuracy. To
rely on dead reckoning alone to execute a long and
complicated path is unsatisfactory. Undoubtedly errors will
creep into the estimate of the robot's position. Such errors
are cumulative and will inevitably lead to an execution
failure. The robot must periodically re-adjust its position
estimate. This is done by sighting landmarks with the
robot's ultrasonic sensors. The ultrasonic sensors measure
the distances to the landmarks and these distances are
compared with precomputed expected observation distances.
Any errors that arise are and correcting dynamically during
path execution. Refer to Fig. 8 for an illustration of
position error correction. The precomputation of the
landmark sensing points can be elegantly done by using data
needed to compute the path transform. The path transform is
computed by using a combination of the obstacle and
distance transforms. The obstacle transform knows the exact
distance that each free space grid cell is from the closest
obstacle filled grid cell.

S

G

T
T

Fig. 8 Monitoring Path Execution by Tracking Landmarks

Since the robot is executing a path which closely follows
the contours of obstacles in the environment, landmark
tracking can be done in a straight forward manner. However,
the obstacle transform does not contain all the information
necessary to track the nearest landmark. The obstacle
transform represents the distance to the closest landmark, but
the direction of the nearest landmark is unknown. We
modify the generation of the obstacle transform to include
the directional information. This can be done in a
straightforward manner. Distance transforms always record
the minimum length path to a goal. At the time a new
minimum value is recorded for a free space cell, we can
easily record the direction of flow of the new distance
minimum into current cell. Fig. 9 shows an example of a
direction transform which was created at the same time as
the obstacle transform. At path execution time the robot
uses the direction and obstacle transforms together with its
orientation to decide which ultrasonic sensor it should use to
correct its estimated position. The Yamabico is equipped
with front, back and side ultrasonic sensors. Therefore, the
robot only uses the directions from the direction transform
which are either N,S,E, or W to correct its position.

Fig. 9 Direction Transform for Tracking Landmarks

Fig. 10 Simulation Results

The proposed complete coverage scheme described above
was initially implemented on the AMROS simulator[9].
This simulator models the kinematics of the locomotion
system, and has realistic models of the robot's sensors. The
simulator is programmed in the exactly same manner as the
Yamabic robot. The simulator proved to be a valuable
debugging tool. Software could be tested on the simulator
before it was used on the robot. Figure 10 shows an
example of output from the AMROS Simulator of the
Yamabic navigating in a 7m x 6m room with a 1.5m x
1.0m obstacle in the room's centre.

Finally the complete coverage scheme was implemented
and tested on the Yamabico. The Yamabico was successfully
able to navigate in the environment depicted in the
simulator.

IV FURTHER WORK AND CONCLUSIONS

The Yamabico was programmed to work in an known
environment. If an unexpected obstacle is encountered along
the planned path trajectory by the sensing systems, the
Yamabico stops and waits for the obstacle to move. In
future it is planned to add an obstacle avoidance procedure of
the type described in [4]. In this procedure the robot uses its
laser range finding system to determine the exact shape and
location of the obstacle. A small local grid map is
constructed and a path transform is computed. The path
transform steers the robot from its current position around
the obstacle to a goal point. The goal point is placed behind
the obstacle on the previously planned complete coverage
path trajectory. Once the robot has reached the goal point, it
recommences the mission of complete coverage of the
environment.

This paper presented a new complete coverage of an
environment scheme based on a numeric potential field
approach called the "path transform". It was argued that the

path transform was an appropriate scheme for complete
coverage, since this method delivered a path that could be
readily executed by a robot. The new method incorporates
the tracking of landmarks to ensure the correct execution of
the planned path by the robot. An implementation of the
scheme on the Yamabico robot was presented.

ACKNOWLEDGMENT

The authors are extremely grateful to Mr. Katsumi
Kimoto for providing his simulator, which was an
extremely valuable tool in debugging the robot programs.
Special thanks are extended to Mr. Keiji Nagatani for his
helpful assistance during the course of this research.

REFERENCES

[1] R.A. Jarvis and J.C. Byrne, "Robot Navigation: Touching,
Seeing and Knowing", Proceedings of 1st Australian
Conference on Artificial Intelligence, November 1986.

[2] R.A. Jarvis, J.C. Byrne and K. Ajay, "An Intelligent
Autonomous Guided Vehicle: Localisation, Environment
Modeling and Collision-Free Path Finding", Proceedings of
19th International Symposium on Industrial Robotics,
November 6-10 1988, Sydney Australia.

[3] A. Zelinsky, "Environment Exploration and Path Planning
Algorithms for a Mobile Robot using Sonar", Ph.D.
dissertation, University of Wollongong, Department of
Computer Science, October 1991.

[4] A. Zelinsky and S. Yuta, "Reactive Path Planning for a
Mobile Robot using Numeric Potential Fields", Proceedings
of 3rd International Conference on Intelligent Autonomous
Systems IAS-3, February 15-18, 1993, Pittsburgh, USA.

[5] O. Khatib, "Real-Time Obstacle Avoidance for Manipulators
and Mobile Robots", International Journal of Robotics
Research, Vol. 5 No.1, pp90-98, 1986.

[6] J. Barraquand and J.-C. Latombe, "Robot Motion Planning:
A Distributed Representation Approach", International
Journal of Robotics Research Vol. 10 No.6, pp628-649,
1991.

[7] S. Yuta, S. Suzuki and S. IIda, "Implementation of a Small
Size Experimental Self-Contained Autonomous Robot -
Sensors, Vehicle Control, and Description of Sensor based
Behaviour", Proceedings of 2nd International Symposium
on Experimental Robotics, June 25-27, 1991, Toulouse,
France.

[8] S. Suzuki, M.K. Habib, J. Iijima and S. Yuta, "How to
Describe the Mobile Robot's - Sensor based Behaviour?",
Journal of Robotics and Autonomous Systems, No.7, 1991,
North-Holland, pp 227-237.

[9] K. Kimoto and S. Yuta, "A Simulator for Programming the
Behavior of an Autonomous Sensor-Based Mobile Robot",
Proceedings of International Conference on Intelligent
Robots and Systems (IROS), July 7-10, 1992, Raleigh,
USA.

