4D Medical Image Processing with CUDA

Anders Eklund, PhD, Mats Andersson, PhD, Hans Knutsson, PhD

Linköping University
Wanderine Consulting
Sweden
Agenda

4D Data?

fMRI – functional magnetic resonance imaging
 - Preprocessing
 - Non-parametric fMRI analysis
 - Real-time fMRI

True 4D Image Denoising
 - Adaptive filtering in 4D
 - Non-separable 4D convolution
Hardware

Intel Xeon 2.4 GHz, 24 GB

1 x Nvidia GTX 580, 3.0 GB

2 x Nvidia GTX 480, 1.5 GB

1500 W power supply
Software

CUDA 4.0 combined with Matlab mex-files

Linux Fedora 14

MeVisLab (for visualization)
4D Data?

A number of medical imaging modalities can collect 4D data.
Several volumes (3D) over time (1D)

Three spatial dimensions, one temporal dimension

Magnetic resonance imaging (MRI)
Computed tomography (CT)
Ultrasound (US)
fMRI

- Functional magnetic resonance imaging
- Estimate brain activity from magnetic resonance images of the brain
- Active neurons consume more oxygen, alters the magnetic properties of the blood

- 4D data \(\sim 64 \times 64 \times 30 \times 200 \)
- Spatial resolution \(\sim 3 \times 3 \times 3 \) mm
- Temporal resolution \(\sim 0.5 \) Hz
Preprocessing

Slice timing correction, compensate for time differences between slices

Motion correction, compensate for head movement

Spatial smoothing, use information from neighbouring voxels

Detrending, remove unwanted time trends

All these preprocessing steps can be performed in parallel

Eklund et al., fMRI analysis on the GPU – Possibilities and challenges, Computer Methods and Programs in Biomedicine, 2012
Motion correction

Volume registration of ~200 volumes to a reference volume

Intensity based registration can induce false positives, due to intensity fluctuations caused by the fMRI signal

We use phase based volume registration, quadrature filters

Local phase is invariant to image intensity

64 x 64 x 22 x 200 dataset, motion correction in 1 second (5 ms per volume)

Eklund et al., Phase Based Volume Registration Using CUDA, ICASSP, 2010
Quadrature filters

Frequency domain

Spatial domain

Real (even)

Imag (odd)
Local phase
Phase based optical flow

\[\nabla \varphi^T \mathbf{v} - \Delta \varphi = 0, \]

\[\mathbf{v}(\mathbf{x}) = B(\mathbf{x}) \mathbf{p} \]

\[\mathbf{v}(\mathbf{x}) = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + \begin{bmatrix} p_4 & p_5 & p_6 \\ p_7 & p_8 & p_9 \\ p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x & y & z & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & x & y & z & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & x & y & z \end{bmatrix} \mathbf{p}. \]

Eklund et al., Phase Based Volume Registration Using CUDA, ICASSP, 2010
Phase based optical flow

\[\epsilon^2 = \sum_k \sum_i \left(\nabla \varphi_k(x_i)^T v(x_i) - \Delta \varphi_k(x_i) \right)^2. \]

\[v(x) = B(x)p \]

\[\epsilon^2 = \sum_k \sum_i c_{ki} \left(\nabla \varphi_k(x_i)^T B(x_i)p - \Delta \varphi_k(x_i) \right)^2. \]

\[\frac{\partial \epsilon^2}{\partial p} = 2 \sum_k \sum_i c_{ki} B_i^T \nabla \varphi_{ki} \left(\nabla \varphi_{ki}^T B_i p - \Delta \varphi_{ki} \right). \]

\[\sum_k \sum_i c_{ki} B_i^T \nabla \varphi_{ki} \nabla \varphi_{ki}^T B_i p = \sum_k \sum_i c_{ki} B_i^T \nabla \varphi_{ki} \Delta \varphi_{ki}. \]

\[A \]

\[\hat{\eta} \]
for each iteration

Convolve the current volume with 3 quadrature filters (x, y, z) (non-separable 3D convolution, 7 x 7 x 7 filters)

Calculate phase differences, phase gradients and certainties

Setup the equation system, by summing over all voxels

Calculate a movement field from the parameter vector

Rotate and translate the current volume, use texture memory for fast linear interpolation

end
Processing times

Preprocessing of 64 x 64 x 22 x 200 dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM8</td>
<td>240 s</td>
</tr>
<tr>
<td>Matlab / C</td>
<td>36 s</td>
</tr>
<tr>
<td>OpenMP</td>
<td>12 s</td>
</tr>
<tr>
<td>CUDA</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Eklund et al., fMRI analysis on the GPU – Possibilities and challenges, Computer Methods and Programs in Biomedicine, 2012
Parametric fMRI analysis

The most common approach to fMRI analysis is to apply the General Linear Model (GLM) to each voxel timeseries

\[Y = XB + e \]

Test if there is a significant difference between activity and rest

Apply t-test or F-test, use parametric null distribution
Multiple testing

One major problem in fMRI is the large number of tests

Test 20 000 brain voxels for activity

\[p = 0.05, \text{ 1000 false positives (on average)} \]

Bonferroni correction, random field theory, false discovery rate
Non-parametric fMRI analysis

Parametric fMRI analysis relies on several assumptions (normality, independence etc.)

The assumptions become more critical due to the multiple testing

More advanced detection statistics do not have a known parametric null distribution

Eklund et al., Fast random permutation tests enable objective evaluation of methods for single subject fMRI analysis, International Journal of Biomedical Imaging, 2011
Non-parametric fMRI analysis

Non-parametric methods are based on a lower number of assumptions, but are much more computationally demanding.

Random permutation test

Empirically estimate the null distribution, by analyzing ~ 10 000 similar datasets.

Fisher ~ 1930, now we have the computational power...
Non-parametric fMRI analysis

Generate datasets by permuting timeseries (single subject fMRI) or by permuting activity maps (multi subject fMRI)

Can solve the problem of multiple testing by estimating the \textit{maximum} null distribution

Only save the maximum test value in each permutation
Permuting timeseries in CUDA

A random permutation of a timeseries can result in irregular memory access patterns.

Want to keep the spatial structure, apply the same permutation to all timeseries (permute the volumes).

If the data is stored as \((x,y,z,t)\), permute chunks of voxels.

\((\text{Do not store data as } (t,x,y,z)\))
Permuting timeseries in CUDA

32 threads along x, 8 threads along y = 256 threads per block

Store permutation vector in constant memory

Each GPU thread loops over time for one voxel

for (int t = 0; t < DATA_T; t++)
 index = x + y \times \text{DATA}_W + z \times \text{DATA}_W \times \text{DATA}_H +
 c_{\text{Permutation_Vector}}[t] \times \text{DATA}_W \times \text{DATA}_H \times \text{DATA}_D;
Non-parametric fMRI analysis

Estimated null distribution of *maximum* t
Multi-GPU
Random permutation test

Data

Preprocessing 3333 Permutations

Preprocessing 3333 Permutations

Preprocessing 3333 Permutations
Processing times

10 000 permutations of
64 x 64 x 22 x 200 dataset

Matlab / C 40 h
OpenMP 6 h
CUDA, 1 x GTX 480 6 min
CUDA, 3 x GTX 480 2 min
Verifying the random permutation test

How do we know that the random permutation test works correctly?

Analyzed 1484 rest datasets (85 GB)
10,000 permutations per dataset (850 TB)

Used a familywise significance threshold of 5%
Found significant activity in ~5% of the rest datasets

SPM8 ~100 years
Multi-GPU ~10 days

Eklund et al., Does Parametric fMRI Analysis with SPM Yield Valid Results?
Non-parametric fMRI analysis

We like to do fMRI analysis by using restricted canonical correlation analysis (RCCA).

RCCA does not have any parametric null distribution.

Use the random permutation test to estimate the null distribution.

Use the estimated null distribution to calculate significance thresholds and p-values.
Non-parametric fMRI analysis

Estimated null distribution of maximum canonical correlation
GLM vs RCCA
Corrected p-values ($1 - p$)
Thresholded at corrected $p = 0.05$
Real-Time fMRI

In real-time fMRI, the analysis is performed while the subject is in the MR scanner

Look at your own brain activity, learn to suppress pain

Interactive brain mapping

Brain computer interfaces

Using the GPU, more advanced fMRI analysis can be done in real-time

Eklund et al., Using real-time fMRI to control a dynamical system by brain activity classification, MICCAI, 2009
Real-Time fMRI

More advanced visualization in real-time

Treat the low resolution fMRI signal as a light source in the high resolution anatomical volume

Local ambient occlusion for shadow effects

Nguyen et al., Concurrent volume visualization of real-time fMRI, IEEE Volume Graphics, 2010
Real-Time fMRI

Nguyen et al., Concurrent volume visualization of real-time fMRI, IEEE Volume Graphics, 2010
Linköping

Real-time fMRI

Norrköping

30 miles
Webcam interface

Advanced visualization
15 meter dome
Conclusions fMRI

The GPU speeds up the preprocessing, required for future increase in temporal and spatial resolution

Non-parametric fMRI analysis becomes practicable

More advanced analysis in real-time

More advanced visualization

Analysis of large datasets (functional connectomes project 85 GB)

Eklund et al., fMRI analysis on the GPU – Possibilities and challenges, Computer Methods and Programs in Biomedicine, 2012
Image denoising is common in medical imaging, to improve the image quality.

For CT data, lower the radiation, keep the same image quality.

4D CT heart dataset of the resolution 512 x 512 x 448 x 20 (9 GB as floats)

Eklund et al., True 4D Image Denoising on the GPU, International Journal of Biomedical Imaging, 2011
Why 4D Image Denoising?

Eklund et al., True 4D Image Denoising on the GPU, International Journal of Biomedical Imaging, 2011

Original

Degraded
Why 4D Image Denoising?

Eklund et al., True 4D Image Denoising on the GPU, International Journal of Biomedical Imaging, 2011
Adaptive filtering / Steerable filters

Adaptive filtering for image denoising, Knutsson et al.

- 2D 1981
- 3D 1992
- 4D 2011
Adaptive filtering / Steerable filters

Estimate the local structure tensor in each pixel / voxel / time voxel, use quadrature filters or monomial filters.

The tensor contains information about the local structure.

In 2D, orientation of lines and edges.

Knutsson, Representing Local Structure Using Tensors, Scandinavian Conference on Image Analysis, 1989
The local structure tensor in 2D

\[T = \lambda_1 \hat{e}_1 \hat{e}_1^T + \lambda_2 \hat{e}_2 \hat{e}_2^T \]

The local structure tensor in 3D

Plane Line Isotropic

The local structure tensor in 4D

Requires 12 complex valued quadrature filters in 4D
(24 real valued filters, non-separable)

Monomial filters, sufficient to use 14 real valued filters in 4D
(recently developed by Knutsson et al.)

Knutsson et al., Representing Local Structure Using Tensors II,
Scandinavian Conference on Image Analysis, 2011
Monomial filters

First order monomial filters in 4D (odd),

x, y, z, t

Second order monomial filters in 4D (even),

$xx, xy, xz, xt, yy, yz, yt, zz, zt, tt$

Knutsson et al., Representing Local Structure Using Tensors II, Scandinavian Conference on Image Analysis, 2011
Adaptive filtering / Steerable filters

Apply a number of denoising filters, one isotropic lowpass filter and a number of anisotropic highpass filters in different directions.

Use the local structure tensor to calculate weights for the filter responses of the highpass filters.

Lowpass filter the data, put back highpass information along well defined orientations.

Effect: Smooth along edges and lines, but not perpendicular to them.
Adaptive filtering in 4D

Requires 14 filters to estimate the local structure tensor, spatial support $7 \times 7 \times 7 \times 7$ time voxels

Requires 11 filters to do the actual denoising, spatial support $11 \times 11 \times 11 \times 11$ time voxels
The local structure tensor in 4D

\[T = \begin{pmatrix} t_1 & t_2 & t_3 & t_4 \\ t_2 & t_5 & t_6 & t_7 \\ t_3 & t_6 & t_8 & t_9 \\ t_4 & t_7 & t_9 & t_{10} \end{pmatrix} = \begin{pmatrix} xx & xy & xz & xt \\ xy & yy & yz & yt \\ xz & yz & zz & zt \\ xt & yt & zt & tt \end{pmatrix} \]

\[
\begin{align*}
t_1 &= \text{mfr}_1 \times \text{mfr}_1 + \text{mfr}_5 \times \text{mfr}_5 + \text{mfr}_6 \times \text{mfr}_6 + \text{mfr}_7 \times \text{mfr}_7 + \text{mfr}_8 \times \text{mfr}_8 \\
t_2 &= \text{mfr}_1 \times \text{mfr}_2 + \text{mfr}_5 \times \text{mfr}_6 + \text{mfr}_6 \times \text{mfr}_9 + \text{mfr}_7 \times \text{mfr}_{10} + \text{mfr}_8 \times \text{mfr}_{11} \\
t_3 &= \text{mfr}_1 \times \text{mfr}_3 + \text{mfr}_5 \times \text{mfr}_7 + \text{mfr}_6 \times \text{mfr}_{10} + \text{mfr}_7 \times \text{mfr}_{12} + \text{mfr}_8 \times \text{mfr}_{13} \\
t_4 &= \text{mfr}_4 \times \text{mfr}_1 + \text{mfr}_5 \times \text{mfr}_8 + \text{mfr}_6 \times \text{mfr}_{11} + \text{mfr}_7 \times \text{mfr}_{13} + \text{mfr}_8 \times \text{mfr}_{14} \\
t_5 &= \text{mfr}_2 \times \text{mfr}_2 + \text{mfr}_6 \times \text{mfr}_6 + \text{mfr}_9 \times \text{mfr}_{9} + \text{mfr}_10 \times \text{mfr}_{10} + \text{mfr}_11 \times \text{mfr}_{11} \\
t_6 &= \text{mfr}_2 \times \text{mfr}_3 + \text{mfr}_6 \times \text{mfr}_7 + \text{mfr}_9 \times \text{mfr}_{10} + \text{mfr}_10 \times \text{mfr}_{10} + \text{mfr}_11 \times \text{mfr}_{12} + \text{mfr}_{11} \times \text{mfr}_{13} \\
t_7 &= \text{mfr}_2 \times \text{mfr}_4 + \text{mfr}_6 \times \text{mfr}_8 + \text{mfr}_9 \times \text{mfr}_{11} + \text{mfr}_10 \times \text{mfr}_{10} + \text{mfr}_11 \times \text{mfr}_{13} + \text{mfr}_{11} \times \text{mfr}_{14} \\
t_8 &= \text{mfr}_3 \times \text{mfr}_3 + \text{mfr}_7 \times \text{mfr}_7 + \text{mfr}_10 \times \text{mfr}_{10} + \text{mfr}_10 \times \text{mfr}_{12} + \text{mfr}_12 \times \text{mfr}_{12} + \text{mfr}_13 \times \text{mfr}_{13} + \text{mfr}_13 \times \text{mfr}_{13} \\
t_9 &= \text{mfr}_3 \times \text{mfr}_4 + \text{mfr}_7 \times \text{mfr}_8 + \text{mfr}_10 \times \text{mfr}_{11} + \text{mfr}_11 \times \text{mfr}_{12} + \text{mfr}_12 \times \text{mfr}_{13} + \text{mfr}_13 \times \text{mfr}_{13} + \text{mfr}_13 \times \text{mfr}_{14} \\
t_{10} &= \text{mfr}_4 \times \text{mfr}_4 + \text{mfr}_8 \times \text{mfr}_8 + \text{mfr}_11 \times \text{mfr}_{11} + \text{mfr}_11 \times \text{mfr}_{13} + \text{mfr}_13 \times \text{mfr}_{13} + \text{mfr}_13 \times \text{mfr}_{14} + \text{mfr}_{14} \times \text{mfr}_{14}
\end{align*}

Memory demanding!
Non-separable 4D convolution with CUDA

Two approaches can be used

Spatial filtering (convolution)

Fast Fourier Transform (FFT) based filtering, multiplication between the filter and the signal in the frequency domain
Spatial filtering

The filters are Cartesian non-separable

\[512 \times 512 \times 448 \times 20 \times 11 \times 11 \times 11 \times 11 \times 11 =\]

375 000 000 000 000 multiply add

11 filter responses for \(512 \times 512 \times 448 \times 20 = 103\) GB

Size of global memory for Nvidia GTX 580 = 3 GB (standard 1.5 GB)

Also need to store the 10 tensor components...
Spatial filtering

For 2D convolution, use the shared memory

Load pixels into shared memory, apply filters, write results back to global memory

(Examples in CUDA SDK)
Spatial filtering

48 KB of shared memory, 11 x 11 x 11 x 9 float values

Do not get any valid filter responses for filters of size 11 x 11 x 11 x 11!

11 filters of size 11 x 11 x 11 x 11 = 644 KB, do not fit in constant memory (64 KB)!

No support for 4D textures
Spatial filtering

Non-separable 4D convolution requires 8 loops (loop over x,y,z,t for the data and for the filter)

Our approach, use an optimized non-separable 2D convolver

Load 64 x 64 float values (x,y) into shared memory (16 KB), three thread blocks = 48 KB
Spatial filtering

Load 11 x 11 filter values into constant memory, for 11 filters (5.3 KB, smaller than constant memory cache of 8 KB)

Apply the 11 filters at the same time, unroll loops with Matlab script

Loop over z and t on the CPU (for data and filter), increment the filter responses inside the kernel

Four loops on CPU, four loops on GPU
No direct support for 4D FFT's in CUDA

The FFT is cartesian separable, apply batches of 1D FFT's

Batches of 1D FFT’s are applied along the first direction of the data

Problem, need to flip the data order between each FFT,

(x,y,z,t) -> (y,z,t,x), (y,z,t,x) -> (z,t,x,y), (z,t,x,y) -> (t,x,y,z)
FFT based filtering

Slower to change the order of data than to perform 1D FFT...

CUDA 4.0 supports batches of 2D FFT's, sufficient with one flip instead of three

Apply 2D FFT along x,y, flip data, apply 2D FFT along z,t

Multiplication between filter and data

Inverse 4D FFT
Processing times

Spatial filtering

CPU 2 days One GPU 27 minutes

FFT based filtering

CPU 1 hour One GPU 9 minutes
Multi-GPU

Data

Slices 1-20
Slices 21-40
Slices 41-60
Spatial vs FFT based filtering

FFT based filtering is, in general, faster but is more memory demanding.

CPU FFT more efficient due to larger memory.

GPU FFT not as optimized as CPU FFT especially for sizes that are not a power of 2.
Spatial vs FFT based filtering

Spatial filtering can handle larger datasets
(512 x 512 x 512 x 100)

Easier to denoise a single slice / volume with spatial filtering

Filter networks, apply several small filters, instead of one large
Denoising results
Denoising results
Wishlist to Nvidia

4D textures

Direct support for 4D FFT's, fftshift function

Global memory, 1.5 GB => 32 – 128 GB

Shared memory, 48 KB => 1 MB per MP

Registers, 32 768 => 524 288 per MP

Constant memory, 64 KB => 1 MB

An image processing library with support for 3D and 4D convolution (floats, not integers!)
Questions?

anders.eklund@liu.se
First order monomial filters in 2D
Second order monomial filters in 2D

Frequency domain

uu uv vv

Spatial domain

xx xy yy